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Maodes producing magnetic reconnection in weakly collisional plasmas have been observed recently
to have a phase velocity in the direction of the ion diamagnetic velocity. This challenges the so-
called drift-tearing mode theory which predicted an opposite phase velocity direction. To solve the
paradox, a two-fluid reconnection theory is formulated in which a “mode inductivity” is introduced
to decouple the relevant plasma motion from the magnetic field lines. This may be viewed as
representing the electromagnetic coupling of the current channels inside the reconnection layer with
those outside it. The relevant theory leads to finding a mode having 8 phase velocity slightly lower
than the ion diamagnetic velocity and in the same direction. The reconnection layer thickness is
proportional to the mode inductivity and the mode growth rate is asscciated with the ion momentum
diffusion. A less preferable slternative is a resistive reconnecting mode, with a phase velocity in the
ion diamagnetic velocity direction, requiring a large anomalous plasma resistivity for the validity of
the adopted two-fluid theory. In this case the reconnection layer width would be proportional to
the plasmas resistivity and the growth rate to the cube of it.
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An Important contribution towards understanding the
nature of the modes that produce magnetic reconnection
in weakly collisional plasmas is given by the experimental
observation of their phase velocities, in particular of the
direction of these relative to the particle diamagnetic ve-
locities in well confined plasmas. In fact, the first theory
of modes producing magnetic reconnection in weakly col-
lisional regimes had led to identifying the so-called drift-
tearing modes [1, 2] that have a phase velocity in the
direction of the electron diamagnetic velocity. Thus, for
a relatively long time, these modes have been considered
as responsible for the reconnection leading to the forma-
tion of the observed magnetic islands. In the meantime

& theoretical problem that has emerged, starting from

the theory of these modes in collisionless regimes (3], is
that the pressnce of an electron temperature pradient
prevents their instability, Consequently the additicnal
effects of other modes [4} had to be introduced in order
to justify their excitation,

More recently however, a systematical investigation [5]
on the phase velocities of modes producing magnetic is-
lands in plasmas produced by different machines, in par-
ticular the JET and the IFrascati Torus devices with vary-
ing degrees of collisionality, has revealed that the direc-
tion of these velocities is that of the ion diamagnetic ve-
locity. The exploration [6] of high-beta discharges on
the JET machine indicates hat an nn = 1 instability can
develop a tearing topology with the recomnection layer
centered on the g = 2 surface. An additionel insight is
given by the direction of the “spontaneous rotation ” of
the background plasma that is recognized [7, 8] to be as-
sociated with these modes. Then these observations have
led us to propose a two-fluid theoretical model that intro-
duces a “mode inductivity” [9] in the longitudinal elec-

tron momentum conservation equation considering the
plasma resistivity to be negligible. This mode induc-
tivity may represent the electromagnetic coupling of the
current channels ingide the reconnection layer with those
outside it, and may be viewed as a “strongly enhanced
electron mass”. According to the dispersion relation ob-
tained by matching the solution inside the reconnection
layer with that of the ouber ideal MHD region, the mode
phage velocity is slightly below the ion diamagnetic ve-
locity and is in the same direction. The growth rate of
this mode is associated to the transverse ion momentum
diffusion.

‘We point out that introducing a considerable resistiv-
ity a reconnecting mode with a phase velocity in the ion
diamagnetic velocity direction can be found but with a
thickness of the reconnection layer proportional to the
plesma resistivity. Thus a large resistivity enhancement
over its classical expression is required in order to ensure
that the layer width is larger than the ion gyro-radius for
the validity of the adopted two-fluid theory.

An important feature of the reconnecting modes that
has been analyzed first in Ref [8] is thal they extract
angular momentum from the background plasma as they
grow, according to the theory of “spontaneous rotation”
in axi-symmetric plasmas given in Refs. [7, 8]. Consis-
tently with this, the rotation is in the direction of the
electron diamagnetic velocity (counter-current direction)
since the phase velocity of the reconnecting mode is in
the direction of ion diamagnetic velocity. This appears
to be confirmed by the experimental results reported in
Ref. [10]. The rotation profile of the background plasma
has a characteristic radial distribution that can be viewed
as the superposition of a monctonically decreasing pro-
file on the radial variable ard a local “bump” that is



proposed [8] to be associated with the considered recon-
necting modes.

Basic FEquations.—We take the guiding center point of
view and consider at first the collisionless longitudinal
(to the magnetic field) electron momentum conservation
equation as consisting of the terms indicated in the fol-
lowing
%% - enhy, (1)
where E ~ —V¢ — ezaflz/at/c and By =~ 'Ekyﬁ.z.
Therefore Eq. {1) that can be appropriate for coilision-
less regimes yields
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where w¥ = —kylc/ (enB)]dpe/dr and A, = 0 and

Em = 0 for k, = 0. We note that in high temperature
regimes, where the longitudinal electron thermal conduc-

tivity is relatively large, ‘ﬁ_/TE] & |fie/me|- Therefore
Pe 2 Tofte and —iwh, + Ugs (dn/dz) + tkile =2 0 where
gy = —icky@/B. Thus
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where wye = —ky [T/ (enB)] dn/dx and Eq. (3) becomes
1 . s waey Tk
2w —wP ~ _ % Zelfu
~ (- k) Ak, [cgﬁ (1 . ) : w'u.] (5)

In order that reconnection take place we introduce an
“inductive” term in the longitudinal momentum conser-
vation equatlon that may represent the effects of an elec-
tromagnetic coupling to other ongoing current carrying
processes. Thus we have, instead of Eq. (1)
By dp.
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where £ = (4r/c®) S5, is the relevant mode inductivity
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and we have to compare E2T.fw? to 4mnelS, /¢

or k2?jw? to wkS,/c® where v} = T./m: and
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w28, /e As we shall see §% ~ (S5p/ (r,D)]* where
r, o~ IBy/B“ and I? > 1. Therefore we compare
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for w ~ wg; and ry = |pi/ (dpi/z)]. Thus we may pro-
ceed considering the first term in Eq. {8) to be well below
unity.

Moreover, if we define 5;,, = sz Jw the z-component

of the equation ¢V x B = —8B/dt takes the form
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Finally, using Eq. (9) and noticing that g,
ife/ {dmky)] 928, /dz? and that VB, =~ ikTefle
—ik,Te (dn/dx) £, that is valid in high temperature
regimes, we obtain from Eq. {6)
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The other equation to be coupled with Eq. (10) is the

quasi-neutrality condition
V. JL+Vbb-J=0 (11)

where b = B/B and we adopt the guiding center point
of view. Therefore

(12)
where 9, = —i(w/Q4 El Ble is the ion po-
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finite Larmor radius drift with wg =
kg and ve = [¢f (enB)]dp;/dz being the ion
diamagnetic velocity. Consequently V - Ji =
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Then Fiq. (11) for the inner region where |d?/ dz®| > k*
can be rewritten as
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Matchmg Condition and Reconnection Layer—The
matching condition between the solution in the inner re-
gion and that in the outer region involves the parameter

r, defined as
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_."where :ém is found by solving the equation
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in the outer region (jz — zo| 3 6). We note that Eq. (15)
is derived from '
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It is clear that a positive r, corresponds to relatively low
values of k2. Then the matching condition is
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where 7 = (z — zp) /6 and d%B,/dz?);, is evaluated as &
function of T in the inner region. In particular, referring
to Eq. (10) we have
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Consequently Fq. (17) becomes
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As we shall show the integral in Eq. (20) is independent
of w and is positive. That is
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Since § ~ S, /r,, for the validity of the adopted two-
fluid theory we require that

8> ps, (23)

where g; = vni/{e; 15 the ion gyro-radius. Thus we need
£
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As we shall verify the relevant dispersion relation
gives, for the mode of interest, w = twy; — dw with
0 < Re (fw) fwq; € 1. Therefore
dpi/dz
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At this point we may propose a magnitude and an
expression for 9, considering its relationship to & as given
by Eq. (25). Thus we relate § to ¢/w,,, “the ion inertia
skin depth”, and in particular, since w ~ wy; we take
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where o is & finite numerical coefficient. Then we obtain
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It is evident that the validity of the adopted linearized
theoretical model is Hmited to the size of the produced
magnetic islands remaining smaller than &, that is

/2
< 8. (28)
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Finally, we argue that the resulting unstable mode rep-
resents the beginning of & non-linear process involving
magnetic reconnection that should “remember” the orig-
inal mode phase velocity.

Dispersion Relation—For the sake of simplicity (in par-
ticular, in order to deal with eigen-functions with one
parity), we consider d?B,/dz? at © = z¢ to be negligible.
Then referring to Egs. (10} and (13) we have
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and we note that when 0 < w/wy < 1 the sclution of
Eq. (29) is a decaying function of Z for z% -3 co. In
particular, by introducing the definition of ¥ given in
Eq. (19), Eq. (29) becomes

a4’y

S =Y - 1) (30)

if we take
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where w2, == Bi*/ (4mp). Thus we arrive at the dispersion
relation
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The relevant root is w = (1 — §&) wg; where
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for wg; ~ whe ~ wyee. Clearly, in this case, Eq. (29) re-
duces to
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and we note that d@ is independent of k. Moreover, the
condition § > p; implies that

0@ > p'i/'rj' (35)

An approximate solution of Eq. (30} that has the ap-
propriate asymptotic limits for both |%| 3> 1 and |z] <1
is
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but is not sufficiently accurate for the evaluation of the
quantity I that weuld be I =~ 6w In fact P. Montag
has shown that the appropriate value of I is about 2
and we note that the quantity I enters as a considerable
reduction factor in the expression for 4.

Importance of Nuclei Momentum Transfer.-Although

the geometric characteristics of the inductive modes iden-
tified by the previous analysis comply with the require-
ments for the excitation of bound and non-convective [11]
normal modes, a growth rate remains to be found. For
this we consider the effects of nuclei collisions or of an
effective transverse (to the magnetic field) viscosity. As
we shall show, a growth rate will be associated with these
effects.
" The most rudimentary way to Hlustrate this point is
to introduce a rate of momentum dissipation v, in the
total momentum conservation equation. Thus, instead of
Eqg. {13} we obtain

Y () ~ (36)
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Then we proceed with the same analysis that has led to
Eq. (32) and obtain
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where 60 is positive and given by Eq. (33) and
vy = v, A, (40)

Clearly, this shows that the mode is weakly unstable. In
particular, we see that both dw and v are independent, of

k.

At this point we may consider instead of v, a viscous
operator such as that due to ion-ion collisions and obtain,
instead of Eq. (38)
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where D, is the transverse “viscous” diffusion coeificient.
Consequently, instead of Eg. (29), we consider
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Using the variables introduced previously, this can be
rewritten as
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which has the solution ¥ =~ ¥p+1 [D“ / (w52)] Y, assumn-
ing that |Dy/ (wi?)| < 1. Here ¥p is the solution of
Eq. (30) and Y, is determined by the equation
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Therefore, the dispersion relation Eq. (20) can be writ-
ten as
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With the definition of § given by Eq.(31), the
dispersion relation that can be obtained is sim-
ilar to FEq.(32) except that I is replaced by
T{1 444 (1)) [Dy/ (w8?)]}. If we take w = wo -+ 1y
where wy = (1 — @) wgi, we obtain the growth rate
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Clearly, the growth rate is independent the sign of &.

A Resistive Mode?-A mode that involves recormection
and has a phase velocity in the direction of the ion dia~
magnetic velocity can be found, although with strong
limitations. These are connected with the fact that the
resistivity introduced to break the "frozen-in” condition
has to be relatively large. That is, we adopt the follow-
ing from of the longitudinal electron momentum balance
equation
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where 1, = 4Dy /c? and D,, is the (resistive) magnetic
field diffusion coefficient.




‘We proceed to obtain the radial differential equation
that is valid in the inner reconnection layer and replaces
Eq.(29). This is
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and is to be coupled to Eq. {13} inside the reconnection
layer. _

Then combining Eqs. (13) and (49) and taking B, ~
Em(} we obtain
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once we define the reconnection layer width 4, as
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T = {z—zg) /6 and Y as in Eq. (1%) with § being re-
placed by &,

Asg we did previously, when we match the solution in
the inner layer with that in the oufer region, we obtain
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that is analogous te Eq. (22). Finally, Egs. (52) and (53)
lead to the dispersion relation
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that is similar to the dispersion relation (9.3) in Ref. [§]
and was derived originally in Ref, (1], where the drift-
tearing mode was identified for the first time.

In this dispersion relation, if we take w >~ wy; + v for
|7 < |was| that corresponds to the mode phase velocity
being in the direction of the ion diamagnetic velocity, we
have the extremely small growth rate

. 2 2
L ‘”*e)“’?g k -D3 > 0. (55)
wai (was — whe)™ (7,1)

This feature, v o« D3, is the reason why this root of
Eq. (54) was not considered previously.

A good feature is that &2 is positive. Then the radial
structure of the modes does not have internal cscillations

unlike the case of the drift tearing mode with w 2 wi,.
On the other hand Eq. (52} yields
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Consequently the condition that §, exceeds the jon gyro-
radius p;, as is necessary for the validity of the adopted
two-fuid description, is
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that is
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o
where DiB = di/(eB), rm = |p/{dp;/dz)| and

D% pi/7pi is of the order of the so-called Gyro-Bohm dif-
fusion coefficient [12]. Therefore a relatively large anoma-
lous resistivity would be required for the validity of this
option and the alternative of introducing a finite mode
inductivity to explain the observed phase velocity of the
modes is considered as preferable.

(Clearly, the evolution of the considered mode into its
nonlinear phase will have to be obtained by numerical
Means.
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